Math 1510 Week 2 Sequence of real numbers A sequence {an} consists of real numbers $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \cdots$ Equivalently, it is a function from IN to IR $\underline{ex1}$ $\alpha_n = (-1)^n$ $\alpha_1 = \alpha_3 = \alpha_5 = \cdots = -1$ $\Omega_2 = \Omega_4 = \Omega_6 = \cdots = 1$ -|, |, - |, |, - |, ... Picture 1 $\alpha_1 = \alpha_3 = \alpha_5 = \cdots$ $a_2 = a_4 = a_6 = \cdots$ 0

$$\underbrace{eg3}_{k \leq 0} \text{ Let } a_n = n^k, \text{ where } k \in \mathbb{R} \text{ is a constant.}}_{n \geq \infty} a_n = \begin{cases} \pm \infty (DNE) & \text{if } k > 0 \\ 1 & \text{if } k = 0 \\ 0 & \text{if } k < 0 \end{cases}$$

$$\underbrace{eg4}_{k \geq 0} b \in \mathbb{R} \text{ is a constant. } \text{Let } a_n = b^n.$$

$$i.e. b, b^3, b^3, b^4, \cdots$$

$$b = \pm 3 \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{8}, \pm \frac{1}{6}, \cdots$$

$$b = -\frac{1}{2} \Rightarrow -\frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{8}, \pm \frac{1}{6}, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -1 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -1 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = -2 \Rightarrow -2, \pm -8, 16, \cdots$$

$$b = (-2)^n$$

.

Observation For X<1, X 0.9 0.99 0.999 f(x) 2.71 2.9701 2.997001 As $x \rightarrow 1$ from the <u>left</u>, $f(x) \rightarrow 3$ We say that limf(x) = 3 • For X > 1 $\frac{X | 1.1 | 1.0| | 1.00|}{f(x) | 3.31 | 3.0301 | 3.00300|}$ As $x \rightarrow 1$ from the <u>right</u>, $f(x) \rightarrow 3$ We say that lim fix) = 3 · Since limf(x) = limf(x) = 3 we can collectively say that $\lim_{x \to 1} f(x) = 3$

Intuitive definition for limit of functions
Let
$$a, L \in \mathbb{R}$$
, $f(x)$ be a function. We say

$$\begin{cases}
\lim_{x \to a} f(x) = L \\
\lim_{x \to a^{+}} f(x) = L & \text{if } f(x) \text{ is close enough to } L \\
\lim_{x \to a} f(x) = L \\
\lim_{x \to a} f(x) = L
\end{cases}$$
when x is close enough to a with $\begin{cases}
x < a \\
x > a \\
x \neq a
\end{cases}$

<u>Rmk</u>

The value f(a) or whether a ∈ Df is not important for lim f(x) or lim f(x)
 lim f(x)

$$\lim_{X \to a} f(X) = L$$

$$\iff \lim_{X \to a^{-}} f(X) = \lim_{X \to a^{+}} f(X) = L$$

Formal definition of limit of functions

$$\lim_{x \to a} f(x) = L$$
(NOT for EXAM)
For any \$\vert >0\$, there exists \$\vert >0\$
 \Leftrightarrow such that if $x \neq a$ and $|x-a| < \delta$
then $|f(x)-L| < \varepsilon$

$$\int_{1}^{1} \int_{1}^{1} \int_{1}^{1$$

eg Let
$$f(x) = \begin{cases} 1-x & \text{if } x \le 2 \\ \sqrt{x} & \text{if } x > 2 \end{cases}$$

Find $\lim_{X \to 0} f(x)$ and $\lim_{X \to 2} f(x)$.
Sol
(a) $x = \frac{1-x}{6}$
(b) $f(x) = \frac{1-x}{6}$
(c) When x is near 0 and $x \neq 0$
 $f(x) = 1 - x$
 $\lim_{X \to 0} f(x) = \lim_{X \to 0} (-x = 1)$

b When x is near 2 and
$$x < 2$$

 $f(x) = 1 - x$
 $\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} 1 - x = 1 - 2 = -1$
c When x is near 2 and $x > 2$
 $f(x) = \sqrt{x}$
 $\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \sqrt{x} = \sqrt{2}$
 $\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \sqrt{x} = \sqrt{2}$

eg
$$y=2^{x}$$

 $\lim_{x\to\infty} 2^{x}=0$
 $\lim_{x\to\infty} 2^{x}=0$
 $y=2^{x}$
Similarly for any $a>1$,
 $\lim_{x\to\infty} 0^{x}=\infty$ (DNE)
 $\lim_{x\to\infty} 0^{x}=0$

$$\frac{eg}{n \to \infty} \lim_{n \to \infty} 3^{n^2 + n + 1} = ?$$

$$\frac{Sol}{N \to \infty} A_S \quad n \to \infty, \quad n^2 + n + 1 \to \infty$$

$$\lim_{n \to \infty} 3^{n^2 + n + 1} = \infty \quad (DNE)$$

$$\frac{eg}{n \to \infty} \lim_{n \to \infty} \frac{1}{3^{n^2 + n + 1}}$$

$$= 0$$

Basic Properties of Limits
Let
$$a \in \mathbb{R}$$
 or $\pm \infty$.
If both $\lim_{X \to a} f(x)$, $\lim_{X \to a} g(x) = xist$, then
(1) $\lim_{X \to a} k = k$
(2) $\lim_{X \to a} [f(x) \pm g(x)] = (\lim_{X \to a} f(x)) \pm (\lim_{X \to a} g(x))$
(3) $\lim_{X \to a} f(x) g(x) = (\lim_{X \to a} f(x)) (\lim_{X \to a} g(x))$
(4) $\lim_{X \to a} \frac{f(x)}{g(x)} = \frac{\lim_{X \to a} f(x)}{\lim_{X \to a} g(x)}$ if $\lim_{X \to a} g(x) \neq 0$
(5) $\lim_{X \to a} f(x)^{k} = (\lim_{X \to a} f(x))^{k}$
(6) $\lim_{X \to a} k^{f(x)} = k^{\lim_{X \to a} f(x)}$ if defined
 $\lim_{X \to a} k^{f(x)} = k^{\lim_{X \to a} f(x)}$ if $\lim_{X \to a} g(x) \neq 0$

<u>Rmk</u> i Simi

i Similar results for one-sided limits and sequences
$\stackrel{e_{\mathcal{P}}}{\longrightarrow} \lim_{x \to a^{+}} f(x) g(x) = \left(\lim_{x \to a^{+}} f(x) \right) \left(\lim_{x \to a^{+}} g(x) \right)$
$\lim_{n\to\infty} (a_n - b_n) = (\lim_{n\to\infty} a_n) - (\lim_{n\to\infty} b_n)$
ii For $limit = \pm \infty$ and $L \in \mathbb{R}$,
the following ideas are intuitively true. However,
DO NOT write them down as they are informal
$\infty \pm L = \infty$ (to if L>0
$-\infty - \infty = -\infty$ $L \cdot \infty = 1 - \infty \text{if } L < 0$
$\infty + \infty = \infty$
$-\infty - \infty = -\infty$ $\frac{L}{\pm \infty} = 0$
iii <u>Indeterminate forms</u>
$\frac{e\varrho}{2} \propto -\infty, \frac{0}{2}, \frac{\pm \infty}{\pm \infty}, 1^{\infty}, \infty^{\circ}, 0^{\circ}$
limit = 0, not exactly zero

For limits of rational function at $\pm \infty$, compare degrees of top and bottom.

$$\begin{array}{l} \textcircled{4} \quad \lim_{x \to 0} \frac{1}{2x} - \frac{1}{x^{2} + 2x} (\pm \infty \pm \infty) \\ = \lim_{x \to 0} \frac{x^{2} + 2x - 2x}{(2x)(x^{2} + 2x)} \\ = \lim_{x \to 0} \frac{x^{2}}{(2x)(x^{2} + 2x)} \\ = \lim_{x \to 0} \frac{1}{(2x)(x^{2} + 2x)} \\ = \lim_{x \to 0} \frac{1}{2(x + 2)} \\ = \frac{1}{2(0 + 2)} \\ = \frac{1}{4} \end{array}$$

$$(5) \lim_{X \to -2} \frac{x^{3} + 8}{x^{2} - 4} \left(\frac{0}{0} \right)$$

$$= \lim_{X \to -2} \frac{(X + 2)(x^{2} - 2x + 4)}{(x + 2)(x - 2)}$$

$$= \lim_{X \to -2} \frac{x^{2} - 2x + 4}{x - 2}$$

$$= \frac{(-2)^{2} - 2(-2) + 4}{-2 - 2}$$

$$= \frac{(-2)^{2} - 2(-2) + 4}{-2 - 2}$$

$$= \frac{12}{-4}$$

$$= -3$$

$$(a^{3} + b^{2} = (a + b)(a^{2} - ab + b^{2})$$

$$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$$

(b)
$$\lim_{X \to 1^{+}} \frac{1-\chi^{3}}{|1-\chi|} \quad (\frac{0}{0})$$

Note: For $\chi > 1$,

$$1-\chi < 0$$

$$\Rightarrow |1-\chi| = -(1-\chi) = \chi - 1$$

$$\therefore \lim_{X \to 1^{+}} \frac{1-\chi^{3}}{|1-\chi|}$$

$$= \lim_{X \to 1^{+}} \frac{1-\chi^{3}}{\chi - 1}$$

$$= \lim_{X \to 1^{+}} \frac{(1-\chi)(1+\chi+\chi^{2})}{\chi - 1}$$

$$= \lim_{X \to 1^{+}} -(1+\chi+\chi^{2})$$

$$= -3$$

$$\begin{array}{c} \textcircled{6} \\ & & \lim_{X \to 2} \frac{2 - x}{3 - \sqrt{x^2 + 5}} & \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ & = \lim_{X \to 2} \frac{2 - x}{3 - \sqrt{x^2 + 5}} \cdot \frac{3 + \sqrt{x^2 + 5}}{3 + \sqrt{x^2 + 5}} \\ & = \lim_{X \to 2} \frac{(2 - x)(3 + \sqrt{x^2 + 5})}{3^2 - (x^2 + 5)} \\ & = \lim_{X \to 2} \frac{(2 - x)(3 + \sqrt{x^2 + 5})}{4 - x^2} \\ & = \lim_{X \to 2} \frac{(2 - x)(3 + \sqrt{x^2 + 5})}{(2 - x)(1 + x)} \\ & = \lim_{X \to 2} \frac{3 + \sqrt{x^2 + 5}}{2 + x} \\ & = \frac{3 + \sqrt{2^2 + 5}}{2 + 2} = \frac{3}{2} \end{array}$$

$$() \lim_{n \to \infty} \left(\int n^2 + \delta n - n \right) \quad (\infty - \infty)$$

$$= \lim_{n \to \infty} \frac{\ln^2 + 8n - n}{\ln^2 + 8n + n} \cdot \frac{\ln^2 + 8n + n}{\ln^2 + 8n + n}$$

$$= \lim_{n \to \infty} \frac{n^2 + 8n - n^2}{\sqrt{n^2 + 8n} + n}$$

$$=\lim_{n\to\infty}\frac{8n}{\sqrt{n^2+8n+n}}\qquad \left(\frac{\infty}{\infty}\right)$$

$$=\lim_{n\to\infty}\frac{8}{\sqrt{1+\frac{8}{n}+1}}$$

$$=\frac{8}{\sqrt{1+0}+1}$$

= 4

$$\begin{cases} \begin{cases} \lim_{x \to \infty} 5x^{3} - [00x^{2} - [000x + 1] \\ x \to \infty \end{cases} \begin{pmatrix} 0 \\ \lim_{x \to \infty} \ln\left(\frac{x}{1 + x^{2}}\right) \\ = \lim_{x \to \infty} x^{3} \left(5 - \frac{100}{x} - \frac{1000}{x^{2}} + \frac{1}{x^{2}}\right) \\ = \lim_{x \to \infty} x^{3} \left(5 - \frac{100}{x} - \frac{1000}{x^{2}} + \frac{1}{x^{2}}\right) \\ = -\infty \quad (DNE) \\ \uparrow \\ \vdots \\ \lim_{x \to -\infty} x^{3} = -\infty \\ \lim_{x \to -\infty} x^{3} = -\infty \\ \lim_{x \to -\infty} x^{3} = -\infty \\ \lim_{x \to \infty} x^{3$$